All our Essay orders are Original, and are written from scratch. Try us today at 30% off

business intelligence Case Studies on the Benefits of Business Intelligence and Analytics. I want you to reflect what you make of that reading in wo

Want answers to the assignment Below?

Text or Whatsapp Olivia at +1 (307) 209-4351


 

business intelligence
Case Studies on the Benefits of Business Intelligence and Analytics.

I want you to reflect what you make of that reading in word documents with further research and references.

BUSINESS INTELLIGENCE
AND ANALYTICS

RAMESH SHARDA

DURSUN DELEN

EFRAIM TURBAN

TENTH EDITION

.

TENTH EDITION

BUSINESS INTELLIGENCE

AND ANALYTICS:

SYSTEMS FOR DECISION SUPPORT

Ramesh Sharda

Oklahoma State University

Dursun Delen

Oklahoma State University

Efraim Turban

University of Hawaii

With contributions by

J.E.Aronson

Tbe University of Georgia

Ting-Peng Liang

National Sun Yat-sen University

David King

]DA Software Group, Inc.

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editor in Chief: Stephanie Wall
Executive Editor: Bob Horan
Program Manager Team Lead: Ashley Santora
Program Manager: Denise Vaughn
Executive Marketing Manager: Anne Fahlgren
Project Manager Team Lead: Judy Leale
Project Manager: Tom Benfatti
Operations Specialist: Michelle Klein
Creative Director: Jayne Conte

Cover Designer: Suzanne Behnke
Digital Production Project Manager: Lisa

Rinaldi
Full-Service Project Management: George Jacob,

Integra Software Solutions.
Printer/Binder: Edwards Brothers Malloy-Jackson

Road
Cover Printer: Lehigh/Phoenix-Hagerstown
Text Font: Garamond

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on the appropriate page within text.

Microsoft and/ or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use , data or
profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical
errors. Changes are periodically added to the information here in. Microsoft and/or its respective suppliers may
make improvements and/or changes in the product(s) and/ or the program(s) described herein at any time.
Partial screen shots may be viewed in full within the software version specified.

Microsoft Windows, and Microsoft Office are registered trademarks of the Microsoft Corporation in the U.S.A.
and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright 2015, 2011, 2007 by Pearson Education, Inc., One Lake Street, Upper Saddle River,
New Jersey 07458. All rights reserved. Manufactured in the United States of America. This publication
is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street,
Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printe d in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Turban, Efraim.
[Decision support and expert system,)
Business intelligence and analytics: systems for decision support/Ramesh Sharda , Oklahoma State University,

Dursun Delen , Oklahoma State University, Efraim Turban, University of Hawaii; With contributions
by J. E. Aronson, The University of Georgia, Ting-Peng Liang, National Sun Yat-sen University,
David King, JOA Software Group, Inc.-Tenth edition.

pages cm
ISBN-13: 978-0-13-305090-5
ISBN-10: 0-13-305090-4
1. Management-Data processing. 2. Decision support systems. 3. Expert systems (Compute r science)

4. Business intelligence. I. Title .
HD30.2.T87 2014
658.4’03801 l-dc23

10 9 8 7 6 5 4 3 2 1

PEARSON

2013028826

ISBN 10: 0-13-305090-4
ISBN 13: 978-0-13-305090-5

BRIEF CONTENTS

Preface xxi

About the Authors xxix

PART I Decision Making and Analytics: An Overview 1
Chapter 1 An Overview of Business Intelligence, Analytics,

and Decision Support 2

Chapter 2 Foundations and Technologies for Decision Making 37

PART II Descriptive Analytics 77

Chapter 3 Data Warehousing 78

Chapter 4 Business Reporting, Visual Analytics, and Business
Performance Management 135

PART Ill Predictive Analytics 185

Chapter 5 Data Mining 186

Chapter 6 Techniques for Predictive Modeling 243

Chapter 7 Text Analytics, Text Mining, and Sentiment Analysis 288

Chapter 8 Web Analytics, Web Mining, and Social Analytics 338

PART IV Prescriptive Analytics 391

Chapter 9 Model-Based Decision Making: Optimization and Multi-
Criteria Systems 392

Chapter 10 Modeling and Analysis: Heuristic Search Methods and
Simulation 435

Chapter 11 Automated Decision Systems and Expert Systems 469

Chapter 12 Knowledge Management and Collaborative Systems 507

PART V Big Data and Future Directions for Business
Analytics 541

Chapter 13 Big Data and Analytics 542

Chapter 14 Business Analytics: Emerging Trends and Future
Impacts 592

Glossary 634

Index 648

iii

iv

CONTENTS

Preface xxi

About the Authors xxix

Part I Decision Making and Analytics: An Overview 1

Chapter 1 An Overview of Business Intelligence, Analytics, and
Decision Support 2

1.1 Opening Vignette: Magpie Sensing Employs Analytics to
Manage a Vaccine Supply Chain Effectively and Safely 3

1.2 Changing Business Environments and Computerized
Decision Support 5

The Business Pressures-Responses-Support Model 5

1.3 Managerial Decision Making 7

The Nature of Managers’ Work 7

The Decision-Making Process 8

1.4 Information Systems Support for Decision Making 9

1.5 An Early Framework for Computerized Decision
Support 11

The Gorry and Scott-Morton Classical Framework 11

Computer Support for Structured Decisions 12

Computer Support for Unstructured Decisions 13

Computer Support for Semistructured Problems 13

1.6 The Concept of Decision Support Systems (DSS) 13

DSS as an Umbrella Term 13

Evolution of DSS into Business Intelligence 14

1.7 A Framework for Business Intelligence (Bl) 14

Definitions of Bl 14

A Brief History of Bl 14

The Architecture of Bl 15

Styles of Bl 15

The Origins and Drivers of Bl 16

A Multimedia Exercise in Business Intelligence 16
~ APPLICATION CASE 1.1 Sabre Helps Its Clients Through Dashboards

and Analytics 17

The DSS-BI Connection 18

1.8 Business Analytics Overview 19

Descriptive Analytics 20

~ APPLICATION CASE 1.2 Eliminating Inefficiencies at Seattle
Children’s Hospital 21

~ APPLICATION CASE 1.3 Analysis at the Speed of Thought 22

Predictive Analytics 22

~ APPLICATION CASE 1.4 Moneybal/: Analytics in Sports and Movies 23

~ APPLICATION CASE 1.5 Analyzing Athletic Injuries 24

Prescriptive Analytics 24

~ APPLICATION CASE 1.6 Industrial and Commercial Bank of China
(ICBC) Employs Models to Reconfigure Its Branch Network 25

Analytics Applied to Different Domains 26

Analytics or Data Science? 26

1.9 Brief Introduction to Big Data Analytics 27

What Is Big Data? 27
~ APPLICATION CASE 1.7 Gilt Groupe’s Flash Sales Streamlined by Big

Data Analytics 29

1.10 Plan of the Book 29
Part I: Business Analytics: An Overview 29

Part II: Descriptive Analytics 30

Part Ill: Predictive Analytics 30

Part IV: Prescriptive Analytics 31

Part V: Big Data and Future Directions for Business Analytics 31

1.11 Resources, Links, and the Teradata University Network
Connection 31

Resources and Links 31

Vendors, Products, and Demos 31

Periodicals 31

The Teradata University Network Connection 32

The Book’s Web Site 32
Chapter Highlights 32 Key Terms 33

Questions for Discussion 33 Exercises 33

~ END-OF-CHAPTER APPLICATION CASE Nationwide Insurance Used Bl
to Enhance Customer Service 34

References 35

Chapter 2 Foundations and Technologies for Decision Making 37
2.1 Opening Vignette: Decision Modeling at HP Using

Spreadsheets 38

2.2 Decision Making: Introduction and Definitions 40

Characteristics of Decision Making 40

A Working Definition of Decision Making 41

Decision-Making Disciplines 41

Decision Style and Decision Makers 41

2.3 Phases of the Decision-Making Process 42

2.4 Decision Making: The Intelligence Phase 44
Problem (or Opportunity) Identification 45
~ APPLICATION CASE 2.1 Making Elevators Go Faster! 45

Problem Classification 46

Problem Decomposition 46

Problem Ownership 46

Conte nts v

vi Contents

2.5 Decision Making: The Design Phase 47
Models 47

Mathematical (Quantitative) Models 47

The Benefits of Models 4 7

Selection of a Principle of Choice 48

Normative Models 49

Suboptimization 49

Descriptive Models 50

Good Enough, or Satisficing 51

Developing (Generating) Alternatives 52

Measuring Outcomes 53

Risk 53

Scenarios 54

Possible Scenarios 54

Errors in Decision Making 54

2.6 Decision Making: The Choice Phase 55
2.7 Decision Making: The Implementation Phase 55

2.8 How Decisions Are Supported 56
Support for the Intelligence Phase 56

Support for the Design Phase 5 7

Support for the Choice Phase 58

Support for the Implementation Phase 58

2.9 Decision Support Systems: Capabilities 59

A DSS Application 59

2.10 DSS Classifications 61

The AIS SIGDSS Classification for DSS 61

Other DSS Categories 63

Custom-Made Systems Versus Ready-Made Systems 63

2.11 Components of Decision Support Systems 64

The Data Management Subsystem 65

The Model Management Subsystem 65
~ APPLICATION CASE 2.2 Station Casinos Wins by Building Customer

Relationships Using Its Data 66

~ APPLICATION CASE 2.3 SNAP DSS Helps OneNet Make
Telecommunications Rate Decisions 68

The User Interface Subsystem 68

The Knowledge-Based Management Subsystem 69
~ APPLICATION CASE 2.4 From a Game Winner to a Doctor! 70

Chapter Highlights 72 Key Terms 73

Questions for Discussion 73 Exercises 74

~ END-OF-CHAPTER APPLICATION CASE Logistics Optimization in a
Major Shipping Company (CSAV) 74

References 75

Part II Descriptive Analytics 77

Chapter 3 Data Warehousing 78
3.1 Opening Vignette: Isle of Capri Casinos Is Winning with

Enterprise Data Warehouse 79

3.2 Data Warehousing Definitions and Concepts 81

What Is a Data Warehouse? 81

A Historical Perspective to Data Warehousing 81

Characteristics of Data Warehousing 83

Data Marts 84

Operational Data Stores 84

Enterprise Data Warehouses (EDW) 85

Metadata 85
~ APPLICATION CASE 3.1 A Better Data Plan: Well-Established TELCOs

Leverage Data Warehousing and Analytics to Stay on Top in a
Competitive Industry 85

3.3 Data Warehousing Process Overview 87
~ APPLICATION CASE 3.2 Data Warehousing Helps MultiCare Save

More Lives 88

3.4 Data Warehousing Architectures 90

Alternative Data Warehousing Architectures 93

Which Architecture Is the Best? 96

3.5 Data Integration and the Extraction, Transformation, and
Load (ETL) Processes 97

Data Integration 98
~ APPLICATION CASE 3.3 BP Lubricants Achieves BIGS Success 98

Extraction, Transfonnation, and Load 100

3.6 Data Warehouse Development 102
~ APPLICATION CASE 3.4 Things Go Better with Coke’s Data

Warehouse 103

Data Warehouse Development Approaches 103
~ APPLICATION CASE 3.5 Starwood Hotels & Resorts Manages Hotel

Profitability with Data Warehousing 106

Additional Data Warehouse Development Considerations 107

Representation of Data in Data Warehouse 108

Analysis of Data in the Data Warehouse 109

OLAP Versus OLTP 110

OLAP Operations 11 0

3.7 Data Warehousing Implementation Issues 113
~ APPLICATION CASE 3.6 EDW Helps Connect State Agencies in

Michigan 115

Massive Data Warehouses and Scalability 116

3.8 Real-Time Data Warehousing 117
~ APPLICATION CASE 3.7 Egg Pie Fries the Competition in Near Real

Time 118

Conte nts vii

viii Conte nts

3.9 Data Warehouse Administration, Security Issues, and Future
Trends 121

The Future of Data Warehousing 123

3.10 Resources, Links, and the Teradata University Network
Connection 126

Resources and Links 126

Cases 126

Vendors, Products, and Demos 127

Periodicals 127

Additional References 127

The Teradata University Network (TUN) Connection 127

Chapter Highlights 128 Key Terms 128

Questions for Discussion 128 Exercises 129

…. END-OF-CHAPTER APPLICATION CASE Continental Airlines Flies High
with Its Real-Time Data Warehouse 131

References 132

Chapter 4 Business Reporting, Visual Analytics, and Business
Performance Management 135

4.1 Opening Vignette:Self-Service Reporting Environment
Saves Millions for Corporate Customers 136

4.2 Business Reporting Definitions and Concepts 139

What Is a Business Report? 140
..,. APPLICATION CASE 4.1 Delta Lloyd Group Ensures Accuracy and

Efficiency in Financial Reporting 141

Components of the Business Reporting System 143

…. APPLICATION CASE 4.2 Flood of Paper Ends at FEMA 144

4.3 Data and Information Visualization 145
..,. APPLICATION CASE 4.3 Tableau Saves Blastrac Thousands of Dollars

with Simplified Information Sharing 146

A Brief History of Data Visualization 147
…. APPLICATION CASE 4.4 TIBCO Spotfire Provides Dana-Farber Cancer

Institute with Unprecedented Insight into Cancer Vaccine Clinical
Trials 149

4.4 Different Types of Charts and Graphs 150

Basic Charts and Graphs 150

Specialized Charts and Graphs 151

4.5 The Emergence of Data Visualization and Visual
Analytics 154

Visual Analytics 156

High-Powered Visual Analytics Environments 158

4.6 Performance Dashboards 160
…. APPLICATION CASE 4.5 Dallas Cowboys Score Big with Tableau and

Teknion 161

Dashboard Design 162

~ APPLICATION CASE 4.6 Saudi Telecom Company Excels with
Information Visualization 163

What to Look For in a Dashboard 164

Best Practices in Dashboard Design 165

Benchmark Key Performance Indicators with Industry Standards 165

Wrap the Dashboard Metrics with Contextual Metadata 165

Validate the Dashboard Design by a Usability Specialist 165

Prioritize and Rank Alerts/Exceptions Streamed to the Dashboard 165

Enrich Dashboard with Business Users’ Comments 165

Present Information in Three Different Levels 166

Pick the Right Visual Construct Using Dashboard Design Principles 166

Provide for Guided Analytics 166

4.7 Business Performance Management 166

Closed-Loop BPM Cycle 167

~ APPLICATION CASE 4.7 IBM Cognos Express Helps Mace for Faster
and Better Business Reporting 169

4.8 Performance Measurement 170

Key Performance Indicator (KPI) 171

Performance Measurement System 172

4.9 Balanced Scorecards 172

The Four Perspectives 173

The Meaning of Balance in BSC 17 4

Dashboards Versus Scorecards 174

4.10 Six Sigma as a Performance Measurement System 175

The DMAIC Performance Model 176

Balanced Scorecard Versus Six Sigma 176

Effective Performance Measurement 1 77

~ APPLICATION CASE 4.8 Expedia.com’s Customer Satisfaction
Scorecard 178

Chapter Highlights 179 Key Terms 180

Questions for Discussion 181 Exercises 181

~ END-OF-CHAPTER APPLICATION CASE Smart Business Reporting
Helps Healthcare Providers Deliver Better Care 182

References 184

Part Ill Predictive Analytics 185

Chapter 5 Data Mining 186
5.1 Opening Vignette: Cabela’s Reels in More Customers with

Advanced Analytics and Data Mining 187

5.2 Data Mining Concepts and Applications 189
~ APPLICATION CASE 5.1 Smarter Insurance: Infinity P&C Improves

Customer Service and Combats Fraud with Predictive Analytics 191

Conte nts ix

x Conte nts

Definitions, Characteristics, and Benefits 192
..,. APPLICATION CASE 5.2 Harnessing Analytics to Combat Crime:

Predictive Analytics Helps Memphis Police Department Pinpoint Crime
and Focus Police Resources 196

How Data Mining Works 197
Data Mining Versus Statistics 200

5.3 Data Mining Applications 201
…. APPLICATION CASE 5.3 A Mine on Terrorist Funding 203

5.4 Data Mining Process 204

Step 1: Business Understanding 205

Step 2: Data Understanding 205

Step 3: Data Preparation 206

Step 4: Model Building 208
…. APPLICATION CASE 5.4 Data Mining in Cancer Research 210

Step 5: Testing and Evaluation 211

Step 6: Deployment 211

Other Data Mining Standardized Processes and Methodologies 212

5.5 Data Mining Methods 214

Classification 214

Estimating the True Accuracy of Classification Models 215

Cluster Analysis for Data Mining 220
..,. APPLICATION CASE 5.5 2degrees Gets a 1275 Percent Boost in Churn

Identification 221

Association Rule Mining 224

5.6 Data Mining Software Tools 228
…. APPLICATION CASE 5.6 Data Mining Goes to Hollywood: Predicting

Financial Success of Movies 231

5.7 Data Mining Privacy Issues, Myths, and Blunders 234

Data Mining and Privacy Issues 234
…. APPLICATION CASE 5.7 Predicting Customer Buying Patterns-The

Target Story 235

Data Mining Myths and Blunders 236
Chapter Highlights 237 Key Terms 238

Questions for Discussion 238 Exercises 239

…. END-OF-CHAPTER APPLICATION CASE Macys.com Enhances Its
Customers’ Shopping Experience with Analytics 241

References 241

Chapter 6 Techniques for Predictive Modeling 243
6.1 Opening Vignette: Predictive Modeling Helps Better

Understand and Manage Complex Medical
Procedures 244

6.2 Basic Concepts of Neural Networks 247
Biological and Artificial Neural Networks 248
..,. APPLICATION CASE 6.1 Neural Networks Are Helping to Save Lives in

the Mining Industry 250

Elements of ANN 251

Network Information Processing 2 52

Neural Network Architectures 254
~ APPLICATION CASE 6.2 Predictive Modeling Is Powering the Power

Generators 256

6.3 Developing Neural Network-Based Systems 258

The General ANN Learning Process 259

Backpropagation 260

6.4 Illuminating the Black Box of ANN with Sensitivity
Analysis 262
~ APPLICATION CASE 6.3 Sensitivity Analysis Reveals Injury Severity

Factors in Traffic Accidents 264

6.5 Support Vector Machines 265
~ APPLICATION CASE 6.4 Managing Student Retention with Predictive

Modeling 266

Mathematical Formulation of SVMs 270

Primal Form 271

Dual Form 271

Soft Margin 271

Nonlinear Classification 272

Kernel Trick 272

6.6 A Process-Based Approach to the Use of SVM 273
Support Vector Machines Versus Artificial Neural Networks 274

6.7 Nearest Neighbor Method for Prediction 275
Similarity Measure: The Distance Metric 276

Parameter Selection 277
~ APPLICATION CASE 6.5 Efficient Image Recognition and

Categorization with kNN 278

Chapter Highlights 280 Key Terms 280

Questions for Discussion 281 Exercises 281

~ END-OF-CHAPTER APPLICATION CASE Coors Improves Beer Flavors
with Neural Networks 284

References 285

Chapter 7 Text Analytics, Text Mining, and Sentiment Analysis 288
7.1 Opening Vignette: Machine Versus Men on Jeopardy!: The

Story of Watson 289

7.2 Text Analytics and Text Mining Concepts and
Definitions 291
~ APPLICATION CASE 7.1 Text Mining for Patent Analysis 295

7.3 Natural Language Processing 296
~ APPLICATION CASE 7.2 Text Mining Improves Hong Kong

Government’s Ability to Anticipate and Address Public Complaints 298

7.4 Text Mining Applications 300

Marketing Applications 301

Security Applications 301
~ APPLICATION CASE 7.3 Mining for Lies 302

Biomedical Applications 304

Conte nts xi

xii Conte nts

Academic Applications 305
…. APPLICATION CASE 7.4 Text Mining and Sentiment Analysis Help

Improve Customer Service Performance 306

7.5 Text Mining Process 307

Task 1: Establish the Corpus 308

Task 2: Create the Term-Document Matrix 309

Task 3: Extract the Knowledge 312
..,. APPLICATION CASE 7.5 Research Literature Survey with Text

Mining 314

7.6 Text Mining Tools 317

Commercial Software Tools 317

Free Software Tools 317
..,. APPLICATION CASE 7.6 A Potpourri ofText Mining Case Synopses 318

7.7 Sentiment Analysis Overview 319
..,. APPLICATION CASE 7.7 Whirlpool Achieves Customer Loyalty and

Product Success with Text Analytics 321

7.8 Sentiment Analysis Applications 323

7.9 Sentiment Analysis Process 325

Methods for Polarity Identification 326

Using a Lexicon 327

Using a Collection of Training Documents 328

Identifying Semantic Orientation of Sentences and Phrases 328

Identifying Semantic Orientation of Document 328

7.10 Sentiment Analysis and Speech Analytics 329

How Is It Done? 329
..,. APPLICATION CASE 7.8 Cutting Through the Confusion: Blue Cross

Blue Shield of North Carolina Uses Nexidia’s Speech Analytics to Ease
Member Experience in Healthcare 331

Chapter Highlights 333 Key Terms 333

Questions for Discussion 334 Exercises 334

…. END-OF-CHAPTER APPLICATION CASE BBVA Seamlessly Monitors
and Improves Its Online Reputation 335

References 336

Chapter 8 Web Analytics, Web Mining, and Social Analytics 338
8.1 Opening Vignette: Security First Insurance Deepens

Connection with Policyholders 339

8.2 Web Mining Overview 341

8.3 Web Content and Web Structure Mining 344
…. APPLICATION CASE 8.1 Identifying Extremist Groups with Web Link

and Content Analysis 346

8.4 Search Engines 347
Anatomy of a Search Engine 347

1. Development Cycle 348

Web Crawler 348

Document Indexer 348

2. Response Cycle 349

Query Analyzer 349

Document Matcher/Ranker 349

How Does Google Do It? 351
~ APPLICATION CASE 8.2 IGN Increases Search Traffic by 1500 Percent 353

8.5 Search Engine Optimization 354

Methods for Search Engine Optimization 355
~ APPLICATION CASE 8.3 Understanding Why Customers Abandon

Shopping Carts Results in $10 Million Sales Increase 357

8.6 Web Usage Mining (Web Analytics) 358

Web Analytics Technologies 359
~ APPLICATION CASE 8.4 Allegro Boosts Online Click-Through Rates by

500 Percent with Web Analysis 360

Web Analytics Metrics 362

Web Site Usability 362

Traffic Sources 363

Visitor Profiles 364

Conversion Statistics 364

8.7 Web Analytics Maturity Model and Web Analytics Tools 366

Web Analytics Tools 368

Putting It All Together-A Web Site Optimization Ecosystem 370

A Framework for Voice of the Customer Strategy 372

8.8 Social Analytics and Social Network Analysis 373

Social Network Analysis 374

Social Network Analysis Metrics 375
~ APPLICATION CASE 8.5 Social Network Analysis Helps

Telecommunication Firms 375

Connections 376

Distributions 376

Segmentation 377

8.9 Social Media Definitions and Concepts 377

How Do People Use Social Media? 378
~ APPLICATION CASE 8.6 Measuring the Impact of Social Media at

Lollapalooza 379

8.10 Social Media Analytics 380

Measuring the Social Media Impact 381

Best Practices in Social Media Analytics 381
~ APPLICATION CASE 8.7 eHarmony Uses Social Media to Help Take the

Mystery Out of Online Dating 383

Social Media Analytics Tools and Vendors 384
Chapter Highlights 386 Key Terms 387

Questions for Discussion 387 Exercises 388

~ END-OF-CHAPTER APPLICATION CASE Keeping Students on Track with
Web and Predictive Analytics 388

References 390

Conte nts xiii

xiv Contents

Part IV Prescriptive Analytics 391

Chapter 9 Model-Based Decision Making: Optimization and
Multi-Criteria Systems 392

9.1 Opening Vignette: Midwest ISO Saves Billions by Better
Planning of Power Plant Operations and Capacity
Planning 393

9.2 Decision Support Systems Modeling 394
~ APPLICATION CASE 9.1 Optimal Transport for ExxonMobil

Downstream Through a DSS 395

Current Modeling Issues 396
~ APPLICATION CASE 9.2 Forecasting/Predictive Analytics Proves to Be

a Good Gamble for Harrah’s Cherokee Casino and Hotel 397

9.3 Structure of Mathematical Models for Decision Support 399
The Components of Decision Support Mathematical Models 399

The Structure of Mathematical Models 401

9.4 Certainty, Uncertainty, and Risk 401

Decision Making Under Certainty 402

Decision Making Under Uncertainty 402
Decision Making Under Risk (Risk Analysis) 402
~ APPLICATION CASE 9.3 American Airlines Uses

Should-Cost Modeling to Assess the Uncertainty of Bids
for Shipment Routes 403

9.5 Decision Modeling with Spreadsheets 404
~ APPLICATION CASE 9.4 Showcase Scheduling at Fred Astaire East

Side Dance Studio 404

9.6 Mathematical Programming Optimization 407
~ APPLICATION CASE 9.5 Spreadsheet Model Helps Assign Medical

Residents 407

Mathematical Programming 408

Linear Programming 408
Modeling in LP: An Example 409

Implementation 414

9.7 Multiple Goals, Sensitivity Analysis, What-If Analysis,
and Goal Seeking 416

Multiple Goals 416
Sensitivity Analysis 417

What-If Analysis 418

Goal Seeking 418

9.8 Decision Analysis with Decision Tables and Decision
Trees 420

Decision Tables 420

Decision Trees 422

9.9 Multi-Criteria Decision Making With Pairwise
Comparisons 423

The Analytic Hierarchy Process 423

~ APPLICATION CASE 9.6 U.S. HUD Saves the House by Using
AHP for Selecting IT Projects 423

Tutorial on Applying Analytic Hierarchy Process Using Web-HIPRE 425
Chapter Highlights 429 Key Terms 430

Questions for Discussion 430 Exercises 430
~ END-OF-CHAPTER APPLICATION CASE Pre-Positioning of Emergency

Items for CARE International 433
References 434

Chapter 10 Modeling and Analysis: Heuristic Search Methods and
Simulation 435
10.1 Opening Vignette: System Dynamics Allows Fluor

Corporation to Better Plan for Project and Change
Management 436

10.2 Problem-Solving Search Methods 437
Analytical Techniques 438

Algorithms 438

Blind Searching 439

Heuristic Searching 439
~ APPLICATION CASE 10.1 Chilean Government Uses Heuristics to

Make Decisions on School Lunch Providers 439

10.3 Genetic Algorithms and Developing GA Applications 441
Example: The Vector Game 441

Terminology of Genetic Algorithms 443

How Do Genetic Algorithms Work? 443

Limitations of Genetic Algorithms 445

Genetic Algorithm Applications 445

10.4 Simulation 446
~ APPLICATION CASE 10.2 Improving Maintenance Decision Making in

the Finnish Air Force Through Simulation 446

~ APPLICATION CASE 10.3 Simulating Effects of Hepatitis B
Interventions 447

Major Characteristics of Simulation 448
Advantages of Simulation 449

Disadvantages of Simulation 450
The Methodology of Simulation 450
Simulation Types 451

Monte Carlo Simulation 452
Discrete Event Simulation 453

10.5 Visual Interactive Simulation 453
Conventional Simulation Inadequacies 453
Visual Interactive Simulation 453

Visual Interactive Models and DSS 454
~ APPLICATION CASE 10.4 Improving Job-Shop Scheduling Decisions

Through RFID: A Simulation-Based Assessment 454

Simulation Software 457

Conte nts xv

xvi Contents

10.6 System Dynamics Modeling 458
10.7 Agent-Based Modeling 461

~ APPLICATION CASE 10.5 Agent-Based Simulation Helps Analyze
Spread of a Pandemic Outbreak 463

Chapter Highlights 464 Key Terms 464
Questions for Discussion 465 Exercises 465

~ END-OF-CHAPTER APPLICATION CASE HP Applies Management
Science Modeling to Optimize Its Supply Chain and Wins a Major
Award 465

References 467

Chapter 11 Automated Decision Systems and Expert Systems 469
11.1 Opening Vignette: I nterContinental Hotel Group Uses

Decision Rules for Optimal Hotel Room Rates 470
11.2 Automated Decision Systems 471

~ APPLICATION CASE 11.1 Giant Food Stores Prices the Entire
Store 472

11.3 The Artificial Intelligence Field 475
11.4 Basic Concepts of Expert Systems 477

Experts 477

Expertise 478

Features of ES 478
~ APPLICATION CASE 11.2 Expert System Helps in Identifying Sport

Talents 480

11.5 Applications of Expert Systems 480
~ APPLICATION CASE 11.3 Expert System Aids in Identification of

Chemical, Biological, and Radiological Agents 481

Classical Applications of ES 481
Newer Applications of ES 482
Areas for ES Applications 483

11.6 Structure of Expert Systems 484
Knowledge Acquisition Subsystem 484

Knowledge Base 485
Inference Engine 485

User Interface 485
Blackboard (Workplace) 485

Explanation Subsystem (Justifier) 486
Knowledge-Refining System 486
~ APPLICATION CASE 11.4 Diagnosing Heart Diseases by Signal

Processing 486

11.7 Knowledge Engineering 487
Knowledge Acquisition 488

Knowledge Verification and Validation 490

Knowledge Representation 490

Inferencing 491

Explanation and Justification 496

11.8 Problem Areas Suitable for Expert Systems 497
11.9 Development of Expert Systems 498

Defining the Nature and Scope of the Problem 499

Identifying Proper Experts 499

Acquiring Knowledge 499

Selecting the Building Tools 499

Coding the System 501

Evaluating the System 501
…. APPLICATION CASE 11.5 Clinical Decision Support System for Tendon
Injuries 501

11.10 Concluding Remarks 502
Chapter Highlights 503 Key Terms 503

Questions for Discussion 504 Exercises 504

…. ENDOFCHAPTER APPLICATION CASE Tax Collections Optimization
for New York State 504

References 505

Chapter 12 Knowledge Management and Collaborative Systems 507
12.1 Opening Vignette: Expertise Transfer System to Train

Future Army Personnel 508

12.2 Introduction to Knowledge Management 512
Knowledge Management Concepts and Definitions 513
Knowledge 513

Explicit and Tacit Knowledge 515

12.3 Approaches to Knowledge Management 516
The Process Approach to Knowledge Management 517

The Practice Approach to Knowledge Management 51 7

Hybrid Approaches to Knowledge Management 51 8

Knowledge Repositories 518

12.4 Information Technology (IT) in Knowledge
Management 520

The KMS Cyde 520

Components of KMS 521

Technologies That Support Knowledge Management 521

12.5 Making Decisions in Groups: Characteristics, Process,
Benefits, and Dysfunctions 523

Characteristics of Groupwork 523

The Group Decision-Making Process 524

The Benefits and Limitations of Groupwork 524

12.6 Supporting Groupwork with Computerized Systems 526
An Overview of Group Support Systems (GSS) 526

Groupware 527

Time/Place Framework 527

12.7 Tools for Indirect Support of Decision Making 528
Groupware Tools 528

Conte nts xvii

xviii Conte nts

Groupware 530

Collaborative Workflow 530

Web 2.0 530

Wikis 531

Collaborative Networks 531

12.8 Direct Computerized Support for Decision Making:
From Group Decision Support Systems to Group Support
Systems 532

Group Decision Support Systems (GOSS) 532

Group Support Systems 533

How GOSS (or GSS) Improve Groupwork 533

Facilities for GOSS 534
Chapter Highlights 535 Key Terms 536

Questions for Discussion 536 Exercises 536

~ END-OF-CHAPTER APPLICATION CASE Solving Crimes by Sharing
Digital Forensic Knowledge 537

References 539

Part V Big Data and Future Directions for Business
Analytics 541

Chapter 13 Big Data and Analytics 542
13.1 Opening Vignette: Big Data Meets Big Science at CERN 543
13.2 Definition of Big Data 546

The Vs That Define Big Data 547
~ APPLICATION CASE 13.1 Big Data Analytics Helps Luxottica Improve

Its Marketing Effectiveness 550

13.3 Fundamentals of Big Data Analytics 551
Business Problems Addressed by Big Data Analytics 554
~ APPLICATION CASE 13.2 Top 5 Investment Bank Achieves Single

Source of Truth 555

13.4 Big Data Technologies 556
MapReduce 557

Why Use Map Reduce? 558

Hadoop 558

How Does Hadoop Work? 558

Hadoop Technical Components 559

Hadoop: The Pros and Cons 560

NoSQL 562
~ APPLICATION CASE 13.3 eBay’s Big Data Solution 563

13.5 Data Scientist 565
Where Do Data Scientists Come From? 565
~ APPLICATION CASE 13.4 Big Data and Analy

Testimonials

Mh! not bad…

The worst part ever was to find my deadline postponed for 1 hour ! They couldn`t finish the essay within...

Great Job

Great job! Those were you, guys, who made my coursework perfect in time according to all my requirements. I will...

Comes through every time

I have used this website for many times, and each time they found perfect writers for me and they produce...

Best Service

The book review I asked for is so amazing! Endless thanks to your team for completing my review and for...

Best

They look cool and trustworthy enough to me. I gather they made discounts as their prices are quite affordable if...

No Complaints So far Guys

Yeah …I really like all the discounts that they offer, the prices are very flexible. Plus they have different promotions...

CLICK HERE  To order your paper

About Scholarfront Essay writing service

We are a professional paper writing website. If you have searched a question and bumped into our website just know you are in the right place to get help in your coursework. We offer HIGH QUALITY & PLAGIARISM FREE Papers.

How It Works

To make an Order you only need to click on “Order Now” and we will direct you to our Order Page. Fill Our Order Form with all your assignment instructions. Select your deadline and pay for your paper. You will get it few hours before your set deadline.

Are there Discounts?

All new clients are eligible for upto 20% off in their first Order. Our payment method is safe and secure.

 CLICK HERE to Order Your Assignment

 

ORDER WITH 15% DISCOUNT

Let your paper be done by an expert

Custom Essay Writing Service

Our custom essay writing service has already gained a positive reputation in this business field. Understandably so, all custom papers produced by our academic writers are individually crafted from scratch and written according to all your instructions and requirements. We offer Havard, APA, MLA, or Chicago style papers in more than 70 disciplines. With our writing service, you can get quality custom essays, as well as a dissertation, a research paper, or term papers for an affordable price. Any paper will be written on time for a cheap price.

Professional Essay writing service

When professional help in completing any kind of homework is all you need, scholarfront.com is the right place to get it. We guarantee you help in all kinds of academia, including essay, coursework, research, or term paper help etc., it is no problem for us. With our cheap essay writing service, you can be sure to get credible academic aid for a reasonable price, as the name of our website suggests. For years, we have been providing online custom writing assistance to students from countries all over the world, including the United States, Canada, the United Kingdom, Australia, Italy, New Zealand, China, and Japan.